Neural Field Conditioning Strategies for 2D Semantic Segmentation

نویسندگان

چکیده

Abstract Neural fields are neural networks which map coordinates to a desired signal. When field should jointly model multiple signals, and not memorize only one, it needs be conditioned on latent code describes the signal at hand. Despite being an important aspect, there has been little research conditioning strategies for fields. In this work, we explore use of as decoders 2D semantic segmentation. For task, compare three methods, simple concatenation code, Feature-wise Linear Modulation (FiLM), Cross-Attention, in conjunction with codes either describe full image or local region image. Our results show considerable difference performance between examined strategies. Furthermore, that via Cross-Attention achieves best is competitive CNN-based decoder

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2D Tensor Field Segmentation

We present a topology-based segmentation as means for visualizing 2D symmetric tensor fields. The segmentation uses directional as well as eigenvalue characteristics of the underlying field to delineate cells of similar (or dissimilar) behavior in the tensor field. A special feature of the resulting cells is that their shape expresses the tensor behavior inside the cells and thus also can be co...

متن کامل

Adaptive Affinity Field for Semantic Segmentation

Existing semantic segmentation methods mostly rely on per-pixel supervision, unable to capture structural regularity present in natural images. Instead of learning to enforce semantic labels on individual pixels, we propose to enforce affinity field patterns in individual pixel neighbourhoods, i.e., the semantic label patterns of whether neighbouring pixels are in the same segment should match ...

متن کامل

2D-3D Fully Convolutional Neural Networks for Cardiac MR Segmentation

In this paper, we develop a 2D and 3D segmentation pipelines for fully automated cardiac MR image segmentation using Deep Convolutional Neural Networks (CNN). Our models are trained end-to-end from scratch using the ACD Challenge 2017 dataset comprising of 100 studies, each containing Cardiac MR images in End Diastole and End Systole phase. We show that both our segmentation models achieve near...

متن کامل

Neural Network Approach for Herbal Medicine Market Segmentation

Market segmentation is the start point of executing targeted marketing strategy. This study aims to determine fit dimensions and appropriate specifications for the segmentation of herbal medicines market in order to provide production and market departments with fit strategies by identifying the profile of the market customers and recognizing their differences in the identified indices. This is...

متن کامل

Deep Learning Markov Random Field for Semantic Segmentation

Semantic segmentation tasks can be well modeled by Markov Random Field (MRF). This paper addresses semantic segmentation by incorporating high-order relations and mixture of label contexts into MRF. Unlike previous works that optimized MRFs using iterative algorithm, we solve MRF by proposing a Convolutional Neural Network (CNN), namely Deep Parsing Network (DPN), which enables deterministic en...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2023

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-031-44210-0_42